Les contaminantnts de l'eau et leurs effets sur la santé

Health effects associated with drinking water

P. PAYMENT¹ et P. HARTEMANN²

SUMMARY

The transmission of waterborne diseases is now controlled in most developed countries but a residual level of both epidemic and endemic diseases can still be observed. Recent observations have involved emerging pathogens such as Cryptosporidium which has been implicated in several very large outbreaks worldwide. To control these waterborne outbreaks many countries are proposing treatment goals that would achieve a significant reduction in the risk to the population without increasing the risks of cancer due to disinfection by-products. In the United States, the objective is zero pathogen in drinking water. This objective can be approached by appropriate treatment but monitoring cannot be done using the current biological indicators. Reliance on continuous measurement of physico-chemical parameters such as disinfectant residual and contact time, turbidity and particulate measurement in real-time are proposed solutions. Microbiological indicators remain an active mean of controlling afterwards water quality: spores of aerobic or anaerobic bacteria are extremely resistant to treatment and offer means of assessing removal of pathogens over a range of several order of magnitude.

Numerous pathogens have been involved in waterborne outbreaks and some are just emerging. Urbanisation, aging of water treatment plants, the increasing number of immunocompromised individuals are potential causes for increased risk of waterborne infectious diseases. The endemic level of gastrointestinal diseases due to drinking water consumption is still significant and could contribute to pathogens in circulation in the populations affected. The dilemma of balancing microbial and cancer health risk remains a difficult one to resolve but it should not result in a reduction of treatment efficiency, because of the low risk-level for cancer used for the Maximum Admissible Concentration (MAC) values (10⁻⁶ full life) as compared to the risk of waterborne infectious disease in absence of adequate water treatment.

¹ Institut Armand-Frappier Université du Québec, 531, Boulevard des Prairies LAVAL (Québec) Canada H7N4C3.
² LHRSP – INSERM U420, Faculté de Médecine, Université Henri Poincaré Nancy 1, 9, Avenue de la Forêt de Haye – 54500 Vandoeuvre France.
* Correspondance.
For setting these MAC values in water it is necessary to consider all sources of exposition of the considered compound and according to is mode of action two ways of evaluation may be followed. The first one, for the molecules with a deterministic effect (or non stochastic effect) the dose-effect relationships dose-effect on individuals and dose responses relationships on populations, are considered, and only no indesirable effect in the consuming population may be accepted. For the second one, for the molecules with a probabilistic (stochastic) effect, (absence of dose-effect relationship but increase of the incidence of cancer or genetic abnormalities in population according to levels of exposure), MAC values are settled by computation off all exposures and considering an acceptable risk of apparition of the pathology ranging from 10^{-6} (WHO) to 10^{-4} (North America and Europe) for consumption of two liters of drinking water during 70 years.

Because of the lack of information about these very conservative approaches, associations of consumers are often misinterpreting: in this situation water is not in accordance with drinking water standards but may be used during a short period without any risk increase for the population. Examples are developed in this paper with description of hazards due to nitrates, nitrites, pesticides and disinfection by-products which are actually frequently associated with debates within water specialists, politicians and consumers. If situation is now more clearly defined for nitrates and pesticides, the lack of scientific information for the effects of bromates combined with the conservative approach for the molecules with “probabilistic” effect, leads to a severe MAC value in comparison with the analytical capacities of laboratories and technical data of water disinfection both with ozone and bleaching agent.

This situation may not lead to the diminution of adequate disinfection water treatment because of the consequences on the increase of the risk of waterborne infectious disease. More progresses are needed, both in terms of knowledges in toxicological and epidemiological data and technological ways of treatment, for being able to produce safe drinking water, with a taste and a price acceptable for the consumer. But the levels of risk considered for setting standards insures that drinking water is one of the safer products offer for consumption.

Key-words: microbial contaminants, chemical contaminants, risk, enteric deseases, public health, drinking water, MAC (Maximal Admissible Concentration).

RÉSUMÉ

La transmission des maladies par la voie hydrique est sous contrôle dans la majorité des pays industrialisés. Malgré tout, des maladies épidémiques ou endémiques sont encore observées. Plusieurs micro-organismes sont en émergence, et Cryptosporidium a été impliqué dans des épidémies importantes dans plusieurs pays. Le contrôle de ces maladies transmissibles par la voie hydrique requiert des autorités des nouvelles approches qui allient le contrôle des risques de cancer dus aux sous-produits de la désinfection au contrôle des micro-organismes les plus résistants. Aux États-Unis, l’objectif proposé est l’absence de micro-organismes dans l’eau potable. Cet objectif ne peut être contrôlé par les indicateurs usuels et l’on recommande donc un niveau de traitement équivalent. Le traitement est alors contrôlé en temps réel par des moyens physico-chemiques tels la turbidité ou la mesure des particules, et un contrôle a posteriori par de nouveaux indicateurs tels les spores des bactéries sporulantes aérobies.

Le vieillissement des installations, des populations immunocompromises et une urbanisation grandissante sont autant de causes de l’émergence de nouvelles maladies infectieuses dont certaines transmissibles par la voie hydrique. La proportion des maladies gastro-intestinales qui est attribuable à l’eau de consommation est encore très grande et elle contribue à maintenir ces infections en circulation dans la population. Le dilemme du contrôle des risques de cancer dus aux sous-produits de la désinfection ne doit pas conduire à une redou-
tion de l'efficacité des traitements, car le niveau de risque à partir duquel ont été fixées les concentrations maximales admissibles de ces sous-produits dans l'eau (10^-6 cas de cancer par vie entière d'exposition) est bien plus faible que celui de contracter une maladie infectieuse d'origine hydrique en absence de traitement adéquat.

La situation en matière de pathologies induites par la consommation d'eau est extrêmement contrastée selon les pays. En effet la transmission de maladies infectieuses par la voie hydrique a été maîtrisée dans la plupart des pays industrialisés par la mise en place d'installations de traitement et d'un contrôle sanitaire s'appuyant sur une réglementation abondante. À l'opposé la situation des pays en voie de développement reste souvent très mauvaise dans ce domaine et l'Organisation Mondiale de Santé estime que 1,5 milliard d'habitants ne disposent pas encore d'eau potable dont cent millions en Europe et que 30 000 morts journalières sont dues à l'absence d'une eau en quantité et qualité satisfaisantes (FORD et COLWELL 1996).

En revanche les pays développés voient la qualité chimique des eaux distribuées de plus en plus souvent mise en cause par les associations de consommateurs. Outre le progrès très rapide des techniques analytiques qui permet de découvrir la présence de traces dont on ne soupçonnait guère la présence dans l'eau du robinet, la pollution croissante de la ressource, les traitements de désinfection et le contact avec les matériaux des réseaux de distribution appartiennent des molécules dont la toxicité à moyen et long terme mérite d'être évaluée.

La mise en œuvre de traitements de désinfection dont l'utilité est indiscutable et l'effet sur la morbidité et la mortalité par pathologie infectieuse chez des populations desservies parfaitement significatif, s'accompagne de la formation de sous-produits. Certains de ceux-ci étant cancérigènes et/ou mutagènes en expérimentation de laboratoire et des études épidémiologiques ayant pu montrer une légère augmentation du risque de cancer dans la population, l'impact médiatique de cette information peut conduire à une mauvaise appréciation dans la gestion des risques pour la santé. Ainsi l'arrêt de la chloration pour éviter la formation de sous produits et quelques cas de cancers aurait conduit un pays d'Amérique du Sud à enregistrer une importante épidémie de choléra et des centaines de décès.

Il n'est pas facile de gérer ce paradoxe entre sophistication du traitement lié à la pollution de la ressource entraînant la présence de sous produits de désinfection et la persistance d'éléments traces et de divers micro-organismes dans une eau de qualité conforme aux critères de potabilité mais que le consommateur ne veut plus consommer. Dans cet article nous tenterons de faire le point sur le risque hydrique pour la santé lié d'une part aux contaminants biologiques et d'autre part aux contaminants chimiques. Sa meilleure connaissance est la clé d'une stratégie de gestion efficace et d'une reconquête du consommateur que la publicité a trop tendance à orienter vers les eaux embouteillées.

Mots clés : contaminants microbiens, risque, contaminants chimiques, maladies entéritiques, santé publique, CMA (Concentrations Maximales Admissibles), eau potable.

MALADIES INFECTIEUSES D'ORIGINE HYDRIQUE : LE PROBLÈME

L'utilisation dans les pays industrialisés des méthodes développées depuis le début du siècle, l'application d'une désinfection par le chlore gazeux, le bioxyde
de chlore, ou l'hypochlorite de sodium à une eau ayant subi une filtration ont permis de contrôler la transmission de maladies par la voie hydrique. Malgré tout, on peut encore observer occasionnellement des épidémies impressionnantes par leur ampleur. Ainsi, l'épidémie à Cryptosporidium qui a affecté près du tiers de la population de la ville de Milwaukee aux États-Unis, est maintenant passée dans l'histoire comme la plus grande épidémie d'origine hydrique recensée. Au mois de mars 1993, plus de 400 000 personnes étaient affectées de maux de abdomen gastro-intestinaux dans cette ville suite à ce que l'on croit maintenant être une défaillance du traitement de filtration et de désinfection en présence d'une eau fortement turbide (MACKENZIE, 1994). Les stratégies de contrôle ne semblent donc pas avoir été à la hauteur et en particulier l'absence des classiques indicateurs de contamination fécale dans l'eau traitée montre bien leur incapacité à prévoir la présence d'agents infectieux en émergence tels les parasites.

1 – MALADIES INFECTIEUSES D'ORIGINE HYDRIQUE

1.1 Micro-organismes pathogènes impliqués

L'urbanisation et les pollutions urbaines, des stations de traitement vétustes, des populations vieillissantes plus susceptibles aux infections, un plus grand nombre d'individus immunodéprimés, immunosupprimés artificiellement ou lors d'infections microbiennes sont autant de causes possibles des observations faites aux cours des dernières décennies. Depuis quelques années, plusieurs micro-organismes émergent comme potentiellement transmissibles par l'eau et constituent une menace grandissante pour la santé humaine. Cyclospora, les mycobactéries, Vibrio cholerae et Legionella pneumophila sont parfois protégés de la désinfection par une résistance acquise ou encore par l'association à d'autres micro-organismes. Alors que Giardia lamblia était le microorganisme le
plus fréquemment impliqué dans les épidémies d’origine hydrique depuis 1950, l’émergence de *Cryptosporidium* au cours des deux dernières décennies a complètement bouleversé non seulement les notions que nous avions de l’eau comme véhicule de transmission, mais nous a aussi obligé à réévaluer l’efficacité des traitements de potabilisation (WEST, 1991). Les kystes de *Giardia* et les oocystes de *Cryptosporidium*, de par leur résistance élevée à la désinfection, sont devenus la cible des traitements d’eau.

1.2 Transmission et contrôle

Les micro-organismes ne connaissent pas de frontières. Les cours d’eau qui traversent des régions, des provinces ou même des pays deviennent le véhicule des maladies qui affligent les populations environnantes qui s’y approvisionnent ou qui les utilisent à des fins récréatives. Les cultures et les élevages de ces régions sont contaminés et constituent une source additionnelle de contamination. Le contrôle de la transmission des maladies infectieuses d’origine hydrique doit donc passer par un programme efficace de maîtrise du milieu incluant un contrôle des élevages riverains, un traitement efficace des eaux usées, un traitement de potabilisation efficace et bien suivi, mais surtout l’éducation des autorités responsables aux risques associés à ces micro-organismes (McFETERS 1990).

Les travaux récents confirment qu’un traitement approprié doit nécessairement inclure une filtration pour réduire significativement le nombre de particules en suspension dans les eaux de surface. La filtration lente sur sable ou encore une filtration rapide après coagulation-sédimentation demeurent des méthodes de choix pour effectuer cette réduction avant la désinfection. Les développements en nanofiltration, osmose inverse et filtration biologique devraient permettre de réduire les risques de transmission des maladies transmissibles par la voie hydrique puisqu’il est maintenant bien démontré que les conditions permettant l’inactivation de certaines protozoaires tels *Cryptosporidium* sont impossibles à obtenir dans une filière industrielle classique de traitement et de désinfection. La transmission de ces maladies ne peut pas être totalement éliminée car les interactions environnementales sont trop nombreuses, mais leur réduction à des niveaux acceptables pour la société est un objectif possible à atteindre.

1.3 Niveau endémique des maladies associées à l’eau du robinet et indicateurs de qualité

Les coliformes totaux et fécaux ont longtemps été les indicateurs de choix pour évaluer la qualité de l'eau. Dans une eau brute la présence de coliformes fécaux constitue non seulement une présomption de la présence de matières fécales humaines ou animales, mais aussi une présomption de la présence des micro-organismes pathogènes de toutes sortes qui peuvent y être associés. La réglementation dans plusieurs pays a maintenant dépassé le simple stade de la numération pour utiliser des tests de présence-absence qui sont confirmés par la mise en évidence d'Escherichia coli considéré comme un indicateur plus fiable de la contamination fécale. Aucun de ces indicateurs ne constitue cependant une protection réelle contre les épidémies lorsqu'on les recherche dans une eau traitée : leur détection pendant ou après une épidémie ne fait que confirmer la non-potabilité de l'eau. De plus, aucun de ces germes n'est un indicateur fiable de l'élimination des micro-organismes les plus résistants tels les virus, les kystes et les oocystes et ceci conduit à devoir s'intéresser à une nouvelle catégorie : les indicateurs d'efficacité de traitement. Plusieurs germes indicateurs ont été proposés en remplacement des coliformes. Les spores des clostridies sulfito-réductrices ou de Clostridium perfringens ont une résistance aux traitements qui approche de celle des micro-organismes les plus résistants. Leur présence en nombre plus faible rend parfois leur utilisation difficile. L'utilisation du dénombrement des spores de ces bactéries constitue un excellent moyen d'évaluer l'élimination des micro-organismes pathogènes en filière de traitement (Rice et al., 1996). Les bactéries hétérotrophes aérobies ou encore la numération totale par épifluorescence, ne sont pas non plus un critère acceptable de qualité. Leur présence est souvent une simple indication de multiplication dans une eau ayant un potentiel de recroissance, mais ne constitue pas un risque sanitaire (Payment, 1995a, 1995b) et ils ressortent plutôt de la notion d'indicateurs de ce qui se passe en distribution.

Les travaux récents sur les indicateurs de qualité en eau potable portent maintenant sur des indicateurs non biologiques tels le dénombrement des particules de la taille des oocystes (2 à 5 µm). La réduction significative du nombre de particules de cette taille ou encore des normes de turbidité inférieures à 0,3 NTU, de désinfection bien contrôlée avec le respect de valeurs de concentration en désinfectant et de temps de contact (concept du CT) sont probablement des moyens qui vont permettre de mieux contrôler non seulement les risques d'épidémies mais aussi le niveau endémique des maladies transmises par l'eau.

2 – CONTAMINANTS CHIMIQUES ET EFFETS SUR LA SANTE

2.1 Bases toxicologiques

En ce qui concerne les troubles de santé éventuels liés à la présence de substances chimiques dans l'eau, il convient de rappeler qu'à l'opposé du risque microbiologique qui s'exerce à court terme, le risque chimique est essentiellement à moyen et long terme. L'OMS dans sa réflexion à ce sujet a pris l'habitude de différencier deux types de substances :
- les composés cancérigènes et génotoxiques pour lesquels il n'existe pas de seuil en dessous duquel il n'existe pas de risque ;
— les autres composés pour lesquels les données toxicologiques ont montré qu’il existait un niveau en dessous duquel aucun effet défavorable n’est observé.

Dans le premier cas l’objectif visé est leur élimination, dans le deuxième il est cherché à établir en fonction des données de la littérature une dose journalière tolérable (DJT) par substance et, par le calcul, d’apprécier la part théorique susceptible d’être apportée par l’eau de boisson et d’en déduire une concentration maximale admissible en tenant compte des facteurs d’incertitude (FI) sur les données utilisées :

\[
\text{DJT} = \text{dose sans effet indésirable observé ou dose minimale ayant un effet indésirable observé} / \text{facteur d’incertitude}
\]

Ces produits sont dits à effet déterministe (non stochastique), l’importance de l’effet croissant avec la dose et entrainant à un moment un état pathologique dont la gravité sera fonction de la dose reçue (relation dose-effet). Sur une population on observe une relation dose-réponse, la réponse étant le pourcentage de la population présentant un état considéré comme pathologique. La proportion de personnes atteintes pour une dose donnée sera fonction de la sensibilité de la population considérée, le plus souvent hétérogène de ce point de vue.

Pour les produits à effet probabiliste (ou stochastique), catégorie à laquelle appartiennent les molécules cancérogènes et mutagènes, il n’est pas possible de les éliminer totalement de l’eau, car ils peuvent être présents dans la ressource et la filière de traitement être incapable de les faire disparaître en totalité. Ils peuvent même être produits par le traitement de désinfection comme dans le cas des trihalométhanes et des bromates. Il n’existe pas pour eux de relation dose-effet, mais une relation dose-réponse au sein de la population exposée. La fréquence de la maladie (qui existe chez des témoins non exposés) augmente en fonction de la dose reçue, d’où le vocable de probabilistes puisque ces produits augmentent la probabilité de rencontrer la pathologie au sein de la population.

Il est possible dans ce cas d’utiliser des modèles mathématiques pour calculer la dose conduisant à un risque additionnel de cancer ou d’anomalie génétique de 10⁻³ pour une vie entière d’exposition (une personne sur cent milliers susceptible de développer un cancer lié à une molécule en consommant deux litres d’eau par jour pendant toute une vie, niveau retenu par l’OMS pour la fixation des valeurs guides), ou de 10⁻⁶ pour les concentrations maximales admissibles (CMA) fixées en Europe et en Amérique du Nord. Les estimations de risque ainsi effectuées sont approximatives, fondées sur des hypothèses et des modèles pêchant plutôt par excès de prudence du fait de l’absence de prise en compte de la pharmacocinétique, de la réparation de l’ADN ou des mécanismes de protection immunologique. Les marges de sécurité prises en compte pour réaliser ces estimations sont importantes, ce qui autorise parfois le législateur à ne pas retenir, par réalisme, pour fixer une CMA dans l’eau de boisson, le chiffre obtenu par le calcul, mais une valeur plus proche des capacités analytiques ou techniques, sans bien sûr accepter que l’écart entre les deux soit trop important.

Les bases de détermination de ces CMA selon les deux types d’effet sont souvent inconnues des consommateurs, et cela conduit à un excès de rigorisme dans leur interprétation, alors que l’OMS elle-même souligne qu’une brève exposition à des concentrations dépassant la DJT ne doit pas causer l’inquiétude à
condition que la dose ingérée par un individu sur une longue période ne dépasse pas de façon appreciable la limite établie. Nous allons chercher à montrer à l’aide de quelques exemples quels sont les principaux paramètres pour lesquels des problèmes techniques existent afin de respecter les CMA fixées avec ce type de marge de sécurité.

2.2 Les nitrates et les pesticides

La présence de nitrates dans les eaux et son effet éventuel sur la santé ont conduit à une littérature extrêmement abondante… proportionnelle aux enjeux économiques liés à cette pollution ! Elle est liée à une pollution croissante par les engrais azotés (épandage de liisiers et azote minéral) et les rejets d’origine humaine.

Pour résumer on peut dire que :

- Les nitrates ne sont guère toxiques en eux-mêmes, à la différence des nitrites, qui se fixent sur l’hémoglobine (Hb) pour donner la méthémoglobine (MHB) et entrainer une cyanose et des signes neurologiques, étudiés dans l’enseignement de pédiatrie, et dont, à notre connaissance, le nombre de cas liés à l’eau en France est nul, ou limité à quelques unités sur les dernières décennies.

- Les nitrats n’ont pas d’effet néfaste direct aux doses rencontrées dans l’eau et l’alimentation. Dans un estomac hypo-acide il pourrait y avoir une prolifération de bactéries capables de réduire les nitrates en nitrites et au moins théoriquement d’assurer la formation de composés N-nitrosés à partir d’amines et de nitrites. Toutes ces substances passent très rapidement dans le sang. La transformation de nitrates en nitrites nécessite la présence de certaines bactéries, ce qui peut se produire dans des aliments contaminés.

- Les nitrates se combinent avec l’hémoglobine et une enzyme peut reconstituer l’Hb à partir de la MHB si la teneur de celle-ci ne dépasse pas 2 à 3 %. Jusqu’à 5 % il n’y a que des signes biologiques, de 5 à 10 % il y a cyanose, de 10 à 20 % on observe une insuffisance d’oxygénation musculaire, la mort pouvant survenir au-delà de 40 à 50 %. La MHB peut traverser la barrière placentaire et lors d’expériences chez l’animal on a observé des morts fœtales.

- Les composés N-nitrosés (nitrosamines et nitrosamides) sont des cancérigènes connus, mais à ce jour aucune étude épidémiologique indiscutable n’a mis en évidence une augmentation de l’incidence des cancers digestifs (ou autres) dans des populations exposées. En revanche chez l’animal ont été provoqués expérimentalement des cancers par injection de nitrates et d’amines, à des doses cependant élevées.

- Le risque pour la population adulte lié aux nitrates est quasi nul : le danger existe lui, pour les nourrissons car il convient de ne pas dépasser un apport de 10 à 15 mg/kg/jour en nitrates. Ceci justifie la concentration maximale admissible fixée par la réglementation à 50 mg·L⁻¹ dans une eau de boisson (et 0,1 mg·L⁻¹ pour les nitrites), cette faible valeur ayant été retenue pour garantir l’absence de risque de méthémoglobinémie dans cette population sensible.

- L’eau contenant des concentrations en nitrates supérieures à 50 mg·L⁻¹ est, bien sûr, déclarée réglementairement non potable et impropre à la consommation, et d’emploi déconseillé pour les nourrissons et les femmes enceintes. Mais elle pourrait être consommée sans aucun risque par des adultes qui ingèrent de bien plus grandes quantités de nitrates et de nitrites par les charcuteries (conservateurs alimentaires autorisés et largement utilisés). Une eau embouteillée utilisée pour la préparation des biberons ne doit pas contenir plus de 25 mg·L⁻¹.
– Il ne s'agit donc pas d'un réel problème pour la santé alors qu'il est un cheval de bataille pour de très nombreuses associations, et que le coût des mesures pour éviter la pollution par les nitrates et éliminer ceux-ci des eaux contaminées est très lourd. Il convient cependant de poursuivre les efforts car les nitrates sont des indicateurs d'une dégradation du milieu, et peuvent être accompagnés de pesticides beaucoup plus difficiles à doser et à éliminer, dont les effets à long terme sont bien moins connus.

– Pour les pesticides il y a deux façons de raisonner pour la fixation d'une CMA. Soit comme l'OMS on applique les principes énoncés plus haut et on fixe des valeurs molécule par molécule selon sa toxicité connue (de type déterministe ou stochastique). Soit comme l'Union Européenne on fixe une valeur indifférenciée de 0,1 µg·L⁻¹ pour chaque molécule quelque soit sa toxicité, en se fondant sur le principe de précaution : absence en quantité notable, la valeur de 0,1 µg·L⁻¹ étant à l'époque liée aux limites de détection des diverses techniques analytiques. Pour certaines molécules cette valeur est trop élevée pour garantir le même niveau de sécurité ce qui a conduit la France à « séviriser » la CMA pour l'aldrin, la dieldrine et l'heptachlor à 0,03 µg·L⁻¹. Pour d'autres, tels les herbicides azotés (atrazine, simazine) peu toxiques, il conviendrait de revoir une CMA plus importante. Il n'y a d'ailleurs jamais été rapporté d'étude épidémiologique montrant une relation entre une pathologie chez les usagers et la consommation d'eau contenant des concentrations de ce niveau de grandeur, ce qui montre bien le caractère protecteur de ces CMA.

2.3 Les sous-produits de désinfection

La situation est très différente pour les sous-produits de la chloration des eaux pour lesquels la majorité des études épidémiologiques récentes montre une légère augmentation du risque de certains cancers (ex. : cancer de la vessie) chez les consommateurs d'eau depuis la première publication de Harris en 1974. Une revue de la littérature à ce sujet peut être trouvée dans un article de Craun (1991) à partir d'une vingtaine d'études épidémiologiques. La méta analyse de MORRIS et al. (1992) rapporte une petite augmentation du risque de cancer de la vessie (RR = 1,21) et du rectum (R = 1,38). Ces données ajoutées aux nombreuses études toxicologiques réalisées sur l'animal ont conduit à la proposition par de nombreuses instances internationales (OMS et UE) et nationales (US EPA, Canada etc.) de CMA pour les trihalométhanés : chloroforme, bromo dichlorométhane, chloro dibromométhane et bromoforme (HARTEMANN et al. 1992).

Si la présence de bromate dans les eaux naturelles est très faible, cet ion peut apparaître dans les eaux traitées soit à partir de l'ion bromure comme précurseur et après traitement d'ozonation (LEGUBE et al., 1995, KOUJOUNOU et al., 1996) soit par introduction directe par l'usage d'eau de Javel (HUTCHINSON et al., 1994). Ainsi pour une solution d'hypochlorite de sodium contenant 150 mg·L⁻¹ de bromate, une désinfection équivalent à 1 ppm de chlore apporte 6,4 mg·L⁻¹ de bromate dans l'eau désinfectée.

Les études de KUROKAWA et al. (1986 et 1990) administrant par voie orale une solution de bromate de potassium à des rats et des souris ont permis de mettre en évidence l'apparition de tumeurs rénales à des concentrations différentes selon la sensibilité des espèces. Les résultats de génotoxicité sont contradictoires. Cependant ces résultats ont conduit le Centre International de Recherche sur le Cancer à classer le bromate de potassium dans le groupe 2B des cancéro-
gènes potentiels chez l'homme. Si l'on applique la modélisation exposée plus haut pour un risque 10^{-6} (une personne sur un million susceptible de développer un cancer lié à cet ion pour une consommation de deux litres d'eau par jour pendant 70 ans de vie) on aboutit à des concentrations de l'ordre de 0,3 µg·L$^{-1}$ (OMS 1993) très largement inférieures au seuil de détection analytique. Diverses propositions de recommandations de CMA provisoires ont été faites entre 10 et 25 µg·L$^{-1}$ (OMS J.O. des CE 1995 ; PONTHIUS, 1995). De nombreuses recherches toxicologiques, analytiques et techniques sont nécessaires afin d'affiner les connaissances dans ce domaine et fixer une valeur paramétrique de façon plus assurée.

3 – CONCLUSION

Les indicateurs bactériologiques traditionnels constituent encore un moyen facile de contrôler la qualité microbiologique de l'eau. Ces indicateurs sont cependant d'une valeur limitée pour évaluer l'élimination des micro-organismes les plus résistants aux traitements de désinfection tels les virus et les kystes des protozoaires pathogènes. L'augmentation des concentrations en désinfectants ou du temps de contact conduit à la formation de sous-produits toxiques. L'application à ces molécules de règles de fixation de concentrations maximales admissibles dans l'eau de boisson pour éviter tout risque toxique ou limiter par molécule la probabilité d'apparition de cancer à un cas par million de consommateurs conduit à des valeurs très difficiles à respecter avec la technologie actuelle. Le dilemme de la réduction du risque microbien et de la réduction du risque de cancer potentiellement associé aux eaux potables désinfectées occupe de ce fait une place importante dans les préoccupations des autorités responsables de la santé publique, puisque ces deux objectifs sont quasiment antagonistes. Heureusement des améliorations dans les technologies de filtration devraient permettre d'améliorer la qualité microbiologique de l'eau avant la toujours indispensable désinfection dont les conditions d'application pourraient ainsi être limitées et permettre d'obtenir une eau saine et acceptable sur le plan gustatif pour le consommateur.

RÉFÉRENCES BIBLIOGRAPHIQUES

JOURNAL OFFICIEL DES COMMUNAUTÉS EUROPÉENNES, 1995. « Proposition de directive du conseil relative à la qualité des eaux destinées à la consommation humaine ». n° C 131/5, 31/05/95.

