Sur l’origine de l’augmentation apparente des inondations en région méditerranéenne

A possible origin for the increase in floods in the Mediterranean region

L. NEPPÉL¹, C. BOUVIER¹, F. VINE⁷², M. DESBORDES¹

Reçu le 6 mars 2003, accepté le 17 juin 2003**.

SUMMARY

In September 2002, the Gard department in the South of France was affected by heavy precipitation that covered a broad geographical area. It was estimated that 80% of the department was flooded; there were 23 victims and the damage was evaluated to be 1.2 billion euros. This hydrological catastrophe raised questions about a possible increase in the frequency of these events during recent years, since several other severe flooding events have been observed in the region over the last 15 years. The aim of this article is to explore these questions through a regional analysis of the extreme daily rainfall that affected the Languedoc-Roussillon region between 1958 and 2002. The daily rain data were used because they are the most available type of information over the observation period. Usually, the rainfall hazard description is based on statistical analysis of the maximum rainfall depth observed at a given rain gauge. However, because the spatial variability of rainfall in the Mediterranean region, such results are only representative of local rainfall conditions. Moreover, this type of analysis does not take into account the spatial coverage of the precipitation, which is another factor influencing the resulting floods. Thus, the regional frequency of extreme rainfall was estimated by taking into account the area covered according to a given rainfall depth. For each rainfall event, a rainfall field was built using a kriging interpolation (NEPPÉL et al., 1997). The isohyetal area defined a rainfall threshold from 10 to 300 mm with a step of 10 mm calculated for each rainfall event. For each rainfall depth from 10 to 300 mm with a step of 10 mm, the probability distribution of the isohyetal area was estimated. The regional rainfall hazards were described with the Depth-Area-Frequency curves (DAF) for 24-h periods. It was shown that at a regional scale, the return period of the last event varied between 80 years for the surface affected by at least 200 mm and 140 years for the surface covered by 300 mm. Compared with other...

² Université Paul-Valéry – Département Géographie – UFR III – Montpellier, France. – Freddy.Vinet@univ-montp3.fr.
* Correspondance. E-mail : neppel@msem.univ.montp2.fr
** Les commentaires seront reçus jusqu’au 30 juin 2004.
major events that have occurred in the region, it appears that the September 2002 event was characterized by:

(i) the spatial extension of the heavy rainfall, for example more than 1800 km² were affected by at least 400 mm in less than 24 h;

(ii) the spatial localisation of the heaviest rainfall depths, which were measured over the highest relief (1000 m to 1500 m) as usual in the 'cévenols' meteorological situation, but rather in the plain where the altitude lies between 200 m and 300 m.

The stationarity analysis of the extreme rainfall frequency was based on the annual number of events exceeding 200 mm, 250 mm and 300 mm over a 24 h maximum duration, between 1958 and 2002. The hypothesis of random events against the hypothesis of a trend or a sudden break in the mean was examined through several statistical tests. The procedures used were the rank correlation test, PETITTT’s test, BUIHAND’s test, HUBERT’s segmentation procedure, a linear regression procedure, and the turning points procedure. Detailed descriptions of these tests can be found in KENDALL and STUART (1977), LUBES-NIEL et al. (1998) and WMO (2000). Except for the rank correlation test, all the procedures led to the conclusion that the three series are randomly distributed at the level of significance 1%, 5% and 10% respectively. Thus no significant increase in extreme rainfall frequency seems to appear. Although the study period was short, 45 years, compared with climatological variability, LUBES-NIEL et al. (1998) show that the procedures used were adapted in detecting trends in 50-yr time series.

In considering historical rainfall data before 1958 in the same region, at least two extreme rainfall events could be compared with the event on 8-9 September 2002: in October 1940, 840 mm of rainfall were measured during 24 h in the Pyrénées-Orientales district and in September 1900, 940 mm were observed over 24 h in Valleraugue, upstream in the Hérault catchment. Furthermore, if the evolution of the rain gauge network density is taken into account, one can argue that such an event could have occurred more frequently. Indeed, the number of rain gauges has varied from 162 gauges in 1900 to 330 today. It has been shown that the number of observed rainfall events varied according to the area of the events and the network density (NEPPPEL et al., 1999b). For example, an event of 150 km² (corresponding to the area covered by more than 600 mm in September 2002) had a probability of 70% to be observed by the network between 1958 and 1993. If one considers the period 1920-1939, this probability decreases to 30%.

In addition, the basin vulnerability has increased. The regional population has grown from 1,460,000 inhabitants in 1949 to 2,300,000 in 2000. At the same time, urbanization has expanded widely. Moreover, this new population came from other districts, and they are not familiar with the Mediterranean rainfall regime and the resulting flash floods. Buildings have often been constructed near rivers, which are attractive building sites, and sometimes even in the river’s main channel, increasing the flooding risk and the flood damages. Thus, rather than climate change, for which the effect on extreme rainfalls cannot be proved, the development of basin urbanisation and vulnerability could explain the apparent increase in floods. As the regional population is expected to reach more than 3,000,000 by 2030, it is necessary to take into account the flood risk in future urban planning.

Key-word: floods, extreme rainfall frequency, climate variability, mediterranean region.
RÉSUMÉ

En septembre 2002, les régions méditerranéennes françaises et notamment le département du Gard ont été affectées par des précipitations d’une extrême intensité. On estime que 80 % de ce département a été inondé, on dénombre 23 victimes et les dégâts ont été évalués à 1,2 milliard d’euros. Cette catastrophe hydrologique soulève à nouveau les problèmes de la fréquence de ces événements et de l’augmentation des forts cumuls de pluie ces dernières années. L’objet de cet article est d’apporter quelques éléments de réponse, notamment à travers l’analyse régionale des pluies extrêmes journalières ayant affecté la région Languedoc-Roussillon de 1958 à 2002.

La fréquence régionale des pluies extrêmes est estimée en prenant en compte la superficie couverte par ces événements en fonction des hauteurs pluviométriques. À l’échelle régionale la période de retour de l’événement varie entre 80 ans pour la superficie touchée par au moins 200 mm à 140 ans pour celle couverte par 300 mm.

La stationnarité des fréquences des pluies extrêmes est analysée à partir des chroniques du nombre annuel d’événements pluvieux dépassant 200 mm, 250 mm et 300 mm en 24 h maximum, entre 1958 et 2002 sur la région. Les tests de stationnarité ne révèlent pas de tendance significative à l’augmentation de ces fréquences. Les données historiques aboutissent aux mêmes conclusions. L’augmentation réelle des inondations est en fait principalement liée à l’augmentation de la vulnérabilité des bassins.

Mots clés : inondations, fréquences des pluies extrêmes, variabilité climatique, région méditerranéenne.

1 – INTRODUCTION

Figure 1 Cartographie du 8 et 9 septembre 2002 (mm).

Mapping of the rainfall (mm) event during the period of 8-9 September 2002.

2 – CARACTÉRISATION ET FRÉQUENCE DE L’ÉVÉNEMENT DES 8 ET 9 SEPTEMBRE 2002

2.1 Méthodologie

L’estimation de la fréquence d’un événement pluvieux peut être réalisée à partir de plusieurs approches. La plus courante consiste à utiliser les chroniques de pluies mesurées localement en un poste pluviométrique. À partir d’une période d’observation de N années, on échantillonne la pluie de durée \(d \) maximale sur une période \(\Delta \) fixée. Un modèle probabilité est ensuite cherché pour décrire les fréquences de la variable aléatoire \(H_\Delta(d) \). Ce modèle est ensuite utilisé pour estimer la période de retour de \(H_\Delta(d) \) supérieure ou égale à une valeur fixée \(h \). On pourra entre autre se référer à Nghuyen et al., 1993, Cunnane, 1989, Lang et al., 1997 pour une description des différents modèles.
probabilistes et les méthodes d’ajustement. En climat méditerranéen, cette approche conduit à des estimations peu représentatives de la pluviométrie sur une surface donnée, à cause de la variabilité spatiale et inter annuelle des précipitations. De plus on utilise un seul caractère pour décrire un événement pluvieux à savoir le cumul pluviométrique ponctuel et on ne tient pas compte de la superficie couverte par les précipitations, qui est un facteur explicatif des crues au moins aussi important. Une méthode alternative consiste à décrire un événement à l’aide de la superficie couverte par les pluies, S(τ) en fonction d’un seuil de pluviométrie τ et d’utiliser ces variables pour estimer la fréquence de l’événement. C’est la démarche que l’on va appliquer ici à la région Languedoc-Roussillon, que l’on désignera par LR.

2.2 Distribution régionale des surfaces des isohyètes

L’aléa pluvieux en région Languedoc-Roussillon est décrit à partir des courbes Hauteur-Surface-Fréquence (HSF) pour une durée de 24 h maximum. La démarche permettant d’établir les courbes HSF est présentée en détail dans NEPPPEL et al. (1998a) pour la période d’observation 1958-1993. On présente ici les lignes directrices. La période d’étude a été actualisée, elle comprend 45 années de 1958 à 2002. Sur cette période, à partir du réseau de pluviomètres de Météo-France, on a échantillonné sur la région tous les événements dépassant 190 mm/j en au moins un poste. Lorsque ce critère est respecté à une date donnée, on extrait de la banque Pluvio de Météo-France toutes les mesures pluviométriques sur la région et les départements limitrophes correspondant à cette date. On échantillonne ainsi 123 événements sur la région soit en moyenne 2,7 événements par an.

On dispose ainsi d’un échantillon de mesures ponctuelles pour décrire un événement. Le champ pluvieux est obtenu en interpolant les hauteurs de pluie aux nœuds d’une maille de 1 x 1 km² projetée sur la région, en utilisant une technique de krigeage climatologique (NEPPPEL et al., 1998a). On déduit ensuite du champ de pluie les superficies Sτ couvertes par au moins τ mm. Pour chaque événement, τ varie de 0 à la hauteur maximum observée, par pas de 10 mm. Pour un seuil τ fixé, on modélise les fréquences des surfaces des isohyètes par une loi gamma incomplète à deux paramètres qui décrit assez bien les différentes distributions (figure 2). Les paramètres sont estimés par la méthode des moments. La figure 3 présente ces courbes qui caractérisent la région LR. À titre d’exemple on observe en moyenne une fois tous les dix ans en LR une surface de 1500 km² touchée par au moins 200 mm de pluie.
Figure 2 Distribution régionale des isohyètes 100 mm, 200 mm et 300 mm en 24 h maxi.

Probability distribution of the area covered by at least 100 mm, 200 mm and 300 mm in 24 h.

Figure 3 Courbes surface-hauteur-fréquence pour 24 h en région LR.

Area-rainfall-frequency curves for a duration of 24 h in the Languedoc-Roussillon region.
2.3 Description de l'événement

Le champ de pluie correspondant à l'événement des 8 au 9 septembre est présenté figure 1. Il a été établi à partir de 374 mesures ponctuelles. Il s'agit des cumuls sur toute la durée de l'épisode. L'analyse des pluviographes et des images du radar de Nîmes ont montré que l'événement est constitué de deux averses majeures dans la nuit du 8 au 9 septembre et dans la matinée du 9. La durée totale de l'épisode est cependant inférieure à 24 h. L'étendue du champ pluvieux est remarquable : un tiers de la superficie du département du Gard a été touché par plus de 400 mm, et sur près de 70 % de sa superficie les cumuls ont dépassé 200 mm. Les cumuls les plus importants, plus de 600 mm sur environ 150 km², sont localisés sur des zones d'altitudes assez faibles entre 200 et 300 m. C'est la partie centrale du bassin du Gard et le bassin du Vidourle en amont de Sommières qui sont affectés par les précipitations les plus importantes. Outre les cumuls c'est aussi la position de l'événement qui le différencie de ceux des 29 et 30 septembre 1958 et 3 et 4 octobre 1958. Avant septembre 2002, ces événements avaient généré les plus fortes crues sur ces bassins.

2.4 Fréquence régionale de l'événement

Pour caractériser la fréquence régionale de l'événement et le comparer à d'autres épisodes pluvieux remarquables de la région, on détermine la période de retour des isohyètes à partir des courbes surfaces-hauteurs-fréquences (figure 4). Pour des cumuls inférieurs à 120 mm, il s'agit d'un événement assez fréquent à l'échelle régionale puisque de telles isohyètes sont observées en moyenne une fois tous les 5 à 15 ans en LR. À partir de 200 mm les périodes de retour régionales des superficies couvertes dépassent 80 ans : la fréquence d'une isohyète 300 mm au moins aussi étendue que celle des 8 et 9 septembre est évaluée à 140 ans sur la région. En comparant les périodes de retour des isohyètes à celles de septembre 1958 et de novembre 2002 dans l'Aude il apparaît que :

i) l'événement de septembre 1958 a une fréquence régionale beaucoup plus courante que les deux autres événements ;

ii) les périodes de retour des surfaces de pluie observées dans l'Aude en novembre 1999 sont plus importantes que dans le Gard, pour des cumuls de moins de 200 mm. Par exemple pour 100 mm la période de retour régionale des surfeaces touchées dans l'Aude est de 75 ans, contre une dizaine d'année pour les pluies de septembre 2002. La fréquence régionale des surfaces ayant reçu au moins 200 mm de pluie est équivalente dans les deux cas (environ 80 ans). Par contre dès que l'on considère des isohyètes de plus de 200 mm, les périodes de retour de l'événement gardois sont bien supérieures à celles de l'événement de l'Aude : pour 250 mm et 300 mm les périodes de retour régionales sont estimées à respectivement 60 ans et 40 ans dans l'Aude contre 110 et 140 ans pour l'événement de septembre 2002.
Figure 4 Période de retour des isohyètes pour différents événements.
Return period of the area covered by a rainfall threshold according to the threshold for 3 events.

2.5 Fréquence à l’échelle des bassins les plus touchés

On a estimé les lames d’eau et leur fréquence pour quatre bassins parmi ceux qui ont été les plus affectés par l’événement (figure 1):

- le Gard à Sanilhac (1750 km²);
- le Gardon d’Anduze à Anduze (539 km²);
- le Vidourle à Marsillargues (822 km²);
- la Cèze à la Roque sur Cèze (1084 km²).

Pour l’événement du 8 et 9 septembre 2002 on a estimé la superficie de chaque bassin couverte par les précipitations en fonction du seuil de pluie et on a estimé la fréquence de cette lame d’eau. Les 4 bassins sont totalement touchés par les précipitations. 50 % de leur superficie est touchée par au moins 200 mm de pluie, quel que soit le bassin (figure 5). Sur 50 % de la superficie du Gard à Sanilhac les précipitations ont dépassé 500 mm en moins de 24 h et sur environ 12 % de sa surface on observe plus de 600 mm. Si l’on classe les bassins versants en fonction de la proportion de leur surface touchée par plus de 400 mm, le Gard tient la première place, suivi du Vidourle, de la Cèze, et enfin du Gardon d’Anduze. Pour chaque bassin, on a estimé la distribution des lames d’eau à l’aide de l’échantillon d’événements décrits en 2.2.
Figure 5 Superficie des bassins couverte par les précipitations, en trait plein pour l’événement de septembre 2002, en trait pointillé septembre 1958.

Proportion of the basin area covered by a given rain threshold according to the threshold for 4 basins and for the event of September 1958 (dashed line) and the event of September 2002 (continuous line).

Les lames d’eau sont calculées pour chaque bassin par :

\[L = \frac{1}{N} \sum_{i=1}^{N} H(x_i, y_i) \]

où \(N \) : le nombre de nœuds d’une grille régulière de 1x1 km\(^2\) projetée sur le bassin versant

\(H(x,y) \) est la pluie interpolée au nœud en \((x,y)\), en mm.

\(L \) est la lame d’eau en mm.

Les distributions de fréquences sont modélisées par une loi gamma incomplète à deux paramètres. La lame observée a une période de retour supérieure à 100 ans sur tous les bassins sauf pour le Gardon à Anduze où elle est de l’ordre de 70 ans (tableau 1). En effet sur ce bassin la lame du 29 septembre 1958 dépasse d’une dizaine de mm celle de septembre 2002. Sur le Gard, la lame (et sa période de retour) augmente avec la surface prise en compte, ce qui souligne encore l’extension spatiale des forts cumuls et leur localisation sur les plaines plutôt que les contreforts cévenols : c’est sur le bassin versant le plus grand, sur le Gard à Sanilhac, que la lame est la plus grande avec 373 mm en moins de 24 h, ce qui représente plus de 650 Mm\(^3\) d’eau précipités sur ce bassin, dont 20 % (132 Mm\(^3\)) sur le Gardon d’Anduze. Le Vidourle à Marsillargues est en deuxième position avec une lame de 351 mm pour 822 km\(^2\) soit environ 290 Mm\(^3\).
Tableau 1
Quantiles décennaux et centennaux des lames d’eau (mm/j) sur 4 bassins versant et période de retour (ans) des lames d’eau du 8 et 9 septembre 2002.

Table 1
Average rainfall depth quantiles over 4 basins corresponding to return periods of 10 and 100 years. Return period of the average rainfall depth observed during the 8-9 September 2002 event.

<table>
<thead>
<tr>
<th></th>
<th>Garden Anduze (539 km²)</th>
<th>Gardan Sanilhac (1 750 km²)</th>
<th>Vidourle Marsillargue (922 km²)</th>
<th>Caze La Roque (1 084 km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effectif</td>
<td>24</td>
<td>36</td>
<td>13</td>
<td>26</td>
</tr>
<tr>
<td>Lame (mm/j)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T = 10 ans</td>
<td>185</td>
<td>165</td>
<td>121</td>
<td>156</td>
</tr>
<tr>
<td>T = 100 ans</td>
<td>255</td>
<td>264</td>
<td>286</td>
<td>263</td>
</tr>
<tr>
<td>Lame du 08/09/02 (mm/j)</td>
<td>244</td>
<td>373</td>
<td>351,2</td>
<td>310,7</td>
</tr>
<tr>
<td>T (ans)</td>
<td>70</td>
<td>> 1 000</td>
<td>270</td>
<td>307</td>
</tr>
</tbody>
</table>

3 – STATIONNARITÉ DES PLUIES EXTRÊMES

En matière d’évolution du climat, les observations à l’échelle de globe montrent une hausse de la température moyenne annuelle de la planète de 0,6 °C durant le dernier siècle (IPCC, 1996 ; HOUGHTON, 2001). En Espagne par exemple SALA et al. (2001) mettent en évidence une augmentation de 0,5 °C à 1,2 °C de la température moyenne annuelle entre 1870 et 1996. En France MOISSELIN et al. (2002) détecte une tendance comparable sur les températures. Les projections des modèles climatiques globaux (GCM) d’ici 2100 indiquent encore une augmentation de 1 à 3,5 °C, sous l’hypothèse d’un doublement de CO2 atmosphérique (MUZIK, 2002). Concernant les précipitations, les projections des GCM semblent converger vers une augmentation dans l’avenir des pluies et sécheresses extrêmes du point de vue de leur intensité et de leur fréquence (SALINGER et al., 2000). Elle est attribuée à une modification de la circulation atmosphérique et des trajectoires des dépressions et à un développement plus important de la convection suite au réchauffement (WHETTON et al., 1993). Cependant les projections des GCM ne fournissent que des valeurs moyennes à des échelles d’espace très larges, sur des grilles de 150 à 360 km de côté. Des techniques de désagrégation sont ensuite employées pour estimer la pluviométrie à une échelle plus réduite (MUZIK, 2002), ce qui rajoute à l’erreur des GCM les incertitudes liées à la désagrégation spatiale. L’analyse des chroniques de précipitation n’aboutit pas toujours à des résultats tranché et ne converge pas toujours vers les résultats des GCM, en raison entre autre d’une disponibilité assez réduite de chroniques longues. Si en Afrique de l’ouest l’examen de séries longues de précipitations montre une diminution du régime annuel des pluies (PATUREL et al., 1998), la détection d’une variabilité des précipitations à l’échelle mensuelle et annuelle en région méditerranéenne française n’apparaît pas (Bidi, 2000) ou pas de façon significative (MOISSELIN et al., 2002). En Italie l’analyse de 4 longues chroniques a montré une diminution du nombre d’événements pluvieux et une augmentation de leur intensité dans les dernières

3.1 Méthodologie

Les variables utilisées pour tester la stationnarité des pluies extrèmes sont le nombre de dépassements annuels des seuils de pluviométrie journalières de 200 mm, 250 mm et 300 mm. On note \(x(t) \) le nombre d’observations indépendantes de pluie ponctuelle dépassant \(t \) mm l’année \(i \), sur la région LR. La période d’étude est 1958-2002, pendant laquelle la densité de poste varie peu. La figure 6 présente la chronique de \(x(t) \). Chacune des trois chroniques est soumise à des tests statistiques de détection de tendance ou de rupture sur la moyenne. Les cinq tests suivants sont appliqués :

- test sur les rangs (tendance) ;
- test de tendance linéaire (tendance) ;
- test de PETTITT (rupture) ;
- test de BUISHAND (rupture) ;
- test de segmentation d’HUBERT (rupture).

Figure 6 Cumul du nombre annuel de dépassement de seuil (mm) en Languedoc-Roussillon.
Cumulative number of events over the t threshold in mm in the Languedoc-Roussillon region.
On trouvera un descriptif de ces tests dans LUBES-NIEL et al. (1998). Le test de tendance linéaire (WMO, 2000) consiste à tester l'hypothèse de linéarité entre la série des x_i et l'année i. Les tests de rupture visent à détecter un changement brutal dans la moyenne des séries.

Les chroniques ne vérifient pas l'hypothèse de normalité nécessaire pour le test de tendance linéaire et de BUIHAND. Les simulations menées par LUBES-NIEL et al. (1998) montre que ce dernier test est cependant peu sensible à cette hypothèse. Le test de linéarité sera néanmoins appliqué. Tous les tests supposent l'absence d'autocorrélation des chroniques. Aucune des trois chroniques ne présente d'autocorrélation significative.

3.2 Résultats

Le tableau 2 présente les résultats en fonction du risque de première espèce α. Pour le test sur les rangs et de tendance linéaire, l'hypothèse nulle est « la série est aléatoire », contre l'hypothèse alternative « la série présente une tendance ». Lorsque l'hypothèse nulle est acceptée, on le note A, c'est dire que le test ne détecte pas de tendance. Pour les tests de PETITT, de BUIHAND et de segmentation, l'hypothèse testée est « la série est aléatoire » contre l'hypothèse alternative « la série présente une rupture ». Si l'hypothèse nulle est rejetée au profit de l'hypothèse alternative, on le note R, cela signifie que le test détecte une rupture. Pour les trois chroniques, les trois tests de rupture concluent au caractère aléatoire des chroniques. Le test de tendance linéaire débouche sur les mêmes conclusions, en rejetant l'hypothèse d'une tendance linéaire. Le test sur les rangs, par contre, amène à rejetter l'hypothèse d'une chronique aléatoire. L'hypothèse alternative de ce test est celle d'une tendance (LUBES-NIEL, 1998). Compte tenu des résultats contradictoires des deux tests, nous avons mis en œuvre un test supplémentaire qui ne fait pas d'hypothèse à priori sur la forme de la tendance. Le test des points de rebroussement (WMO, 2000) teste l'hypothèse du caractère aléatoire d'une série contre la présence d'une tendance ou d'une périodicité. Aucune hypothèse supplémentaire n'est requise pour ce test. Quel que soit le seuil de signification celui-ci ne rejette pas l'hypothèse des séries aléatoires, et ceci pour les 3 chroniques. L'absence d'une autocorrélation significative dans les chroniques quel que soit le retard considéré, confirme d'ailleurs le résultat de ce test quant à une éventuelle périodicité. Tous les tests de rupture s'accordent sur le caractère aléatoire des 3 chroniques. Deux tests sur trois débouchent sur une absence de tendance. L'analyse des chroniques ne montre donc pas de changement brusque dans les fréquences des pluies extrêmes, ni de tendances significatives à l'augmentation des fréquences ces dernières années. Ces résultats convergent vers les conclusions de BIDI (2000) et MOISSELIN et al. (2002).
Tableau 2 Test de rupture dans les chroniques x(t) de dépassements annuels de seuils de précipitations en Languedoc-Roussillon : "A" signifie que l'on accepte l'hypothèse que la série est aléatoire, "R" signifie qu'on la rejette.

<table>
<thead>
<tr>
<th>Test</th>
<th>x(t)</th>
<th>τ = 200 mm</th>
<th>τ = 250 mm</th>
<th>τ = 300 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test de tendance linéaire</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Test sur les Rangs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α = 1 %</td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>α = 5 %</td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>α = 10 %</td>
<td></td>
<td>A</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Test de Pettitt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α = 1 %</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>α = 5 %</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>α = 10 %</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Test de Buishand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α = 1 %</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>α = 5 %</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>α = 10 %</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Segmentation de Hubert</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

4 – DISCUSSIONS

L’analyse des chroniques de dépassement de seuil ne semble pas mettre en évidence une augmentation des fréquences des pluies extrêmes, sur la période 1958 à 2002. L’information historique peut également apporter des éléments de réponse, qui abondent plutôt dans le sens de nos conclusions. En effet des événements pluvieux exceptionnels similaires à ceux de 1999 dans l’Aude et 2002 dans le Gard ont déjà été observés par le passé. Si l’on se limite à la région LR on peut citer l’Aigouat de 1940 dans les Pyrénées-Orientales (SOUTADE, 1993) où la pluie journalière maximale a dépassé 850 mm/j, et Valleraugue dans le Gard où l’on a relevé 940 mm/24h en septembre 1900 (DDE30, 1996). Soit en quarante ans, deux événements dont les cumuls dépassent encore les plus forts enregistrés en 1999 et en 2002. De plus il est important de noter que la densité de postes de mesures a considérablement varié au cours des cent dernières années (figure 7) : le nombre de postes évolue entre 162 en 1900 à environ 330 actuellement. Or la probabilité d’observer un événement exceptionnel sur la région diminue lorsque la densité de postes baisse. L’apparente augmentation des pluies extrêmes est liée à l’évolution de la densité de poste. En effet un même événement ne serait pas observé de la même façon selon la période. La figure 8 illustre ce propos : elle représente le champ de pluie de l’événement
des 12 et 13 novembre 1999 obtenu à partir du réseau des 207 pluviomètres en fonctionnement en 1999. On y superpose uniquement les postes ayant fonctionné en 1930. Le réseau en 1930 n’aurait pas enregistré plus de 350 mm sur les deux jours. La zone de pluie intense de plus 400 mm n’aurait pas été mesurée. Par ailleurs, on a pu montrer par simulation que le réseau n’enregistrerait pas toutes les surfaces pluvieuses sur la région (NEPPÉL et al., 1998b). À titre d’exemple, sur la période 1958-1993 où la densité du réseau oscille entre 260 et 320 postes / 28 000 km², une zone pluvieuse de 150 km² se produisant aléatoirement quelque part sur la région a 30 % de chance passer à travers les mailles du réseau de pluviomètres (figure 7). Entre 1920 et 1939, le nombre de postes en service varie de 87 à 120, cette probabilité est alors de 70 %. On peut en déduire que le nombre d’événements pluvieux exceptionnels observés est probablement sous-estimé au cours de la première moitié du XXᵉ siècle. Ainsi, l’influence du changement climatique sur les événements extrêmes ne semble pas avérée : la moindre densité du réseau dans la première moitié du XXᵉ siècle tend à sous-estimer la fréquence des épisodes extrêmes observés au cours de cette période ; le nombre moyen d’événements extrêmes sur les 50 dernières années est stationnaire.

Le signal d’un changement climatique ne semble pas émerger des données climatiques, par contre un certains nombre de facteurs humains peuvent expliquer l’augmentation, réelle, du nombre des catastrophes naturelles dues aux inondations. Ces facteurs sont liés à un accroissement important, depuis une trentaine d’années, de l’exposition et de la vulnérabilité aux risques naturels. De surcroît, la surmédiation des phénomènes naturels a tendance à amplifier la fréquence et l’impact de ces phénomènes, et favorise l’impression de dérèglement climatique (LENOIR, 2001).

Tout d’abord l’augmentation de la population a accentué la pression sur le milieu naturel et augmenté les enjeux exposés au risque. La population est passée en Languedoc-Roussillon d’environ 1 460 000 en 1946 à 2 300 000 actuellement. Dans l’Hérault, on estime à 8 % la part de population (75 000 personnes) qui vit en zone inondable. Cette croissance s’est accompagnée d’une urbanisation souvent imprudente qui a accentué les risques de ruissellement sur des surfaces imperméabilisées et a conduit à l’aménagement des lits majeurs des cours d’eau ou des plaines littorales inondables. Lors des inondations récentes dans la région, on trouve de nombreux exemples de communes où la plupart des zones urbanisées inondées étaient de construction récente : ce fut le cas de Durban-Corbières en 1999 où les dommages ont atteint 10 millions d’euros pour 650 habitants soit 15 000 € par habitant. Depuis une vingtaine d’années, une école, un centre de trésorerie générale, un foyer de jeunes, une supérette et des habitations avaient été construites dans le lit majeur de la Berre (VINET, 2001). Tout a été submergé et détruit. Le même scénario s’est reproduit à Sommieres le 10 septembre 2002 : lotissements et supermarché ont été dévastés par le Vidourle. La comparaison de l’occupation du sol en rive droite à Sommieres entre 1957 et 2000 illustre parfaitement cette progression de l’urbanisation des lits majeurs. Depuis les années 1950, un lotissement a été construit à l’emplacement des vignes ainsi qu’un supermarché desservis par une nouvelle route (ouverte en 2001) qui longe la rive droite et franchit le Vidourle (figure 9) au nord de la commune par un nouveau pont. On pourrait multiplier les exemples où les intérêts de l’urbanisation l’ont emporté sur une prise en compte raisonnable des risques naturels.
Figure 7 Évolution du nombre de postes pluviométriques en Languedoc-Roussillon et estimation du pourcentage d'épisodes pluvieux observés par le réseau entre 1958-1993 en fonction de leur superficie.

The number of daily rain gauges over the Languedoc-Roussillon region and the estimation of the proportion of the observed rainfall events during the period 1958-1993 according to their area.
Figure 8 Précipitations des 12 et 13 novembre 1999, les croix représentent le réseau de pluviomètre en 1930.

Mapping of the rainfall event for the 12-13 November 1999. The crosses represent the daily rain gauge network in 1930.

Figure 9 Évolution de l’urbanisation à Sommières entre 1957 (a) et 2002 (b).

Evolution of urbanisation in Sommières between 1957 (a) and 2002 (b).

La période 1960-2000 a été marquée par une occultation du risque naturel dans les préoccupations d’aménagement. Les raisons sont nombreuses. Pendant la période des « trente glorieuses », faite de croissance économique et démographique, les collectivités locales et territoriales eurent un besoin urgent et massif de terrains à bâtir. Les lits majeurs des cours d’eau étaient des terrains facilement aménageables (alluvions) et dont la maîtrise foncière était relativement aisée. De plus, les cours d’eau, lorsqu’ils traversaient la commune étaient un élément fédérateur dans le développement urbain de la commune. À Durban-Corbières, à Sommières, on a construit pour relier les deux rives ici un pont, là une passerelle, qui n’ont pas résisté aux premières crues de grande ampleur.
La loi de décentralisation de 1982 a donné de nombreux pouvoirs aux municipalités notamment en matière d’urbanisme et d’aménagement. Si cette décentralisation a eu des effets bénéfiques sur la démocratie locale, les conseils municipaux sont devenus redevables à la population du développement de la commune : il faut construire, attirer des services et des emplois. L’échéance est le mandat politique soit 6 ans pour une équipe municipale. Que sont six années lorsque la variabilité des phénomènes naturels se calcule sur des décennies ? De plus la mobilité des populations alimente encore une perte de mémoire des risques. L’« ancien » qui meurt dans le village où il est né après avoir vécu plusieurs inondations est une figure en voie de disparition. L’école, les médias, les associations et les collectivités publiques doivent palier cette perte de mémoire.

La vulnérabilité face aux risques naturels est de plus en plus forte, les enjeux plus élevés (chaque foyer possède une ou deux voitures, un téléviseur, un magnétoscope, l’ordinateur…) et le degré de tolérance aux risques naturels diminue. La perception que les sociétés ont des risques naturels évolue. Le vécu, les réactions des individus face aux catastrophes naturelles ne peuvent être les mêmes dans nos sociétés urbanisées qu’ils ne l’étaient dans le monde encore majoritairement rural jusqu’au milieu du siècle dernier.

5 – CONCLUSIONS

La récurrence de l’événement pluvieux du 8 septembre 2002 dépend de la variable descriptive utilisée : si l’on considère l’étendue de la surface touchée par plus de 200 mm de pluie on peut l’estimer à 80 ans, pour les superficies ayant reçu plus de 250 mm la période de retour régionale estimée à partir des distributions de fréquences est de l’ordre de 100 ans. À l’échelle des bassins versants retenus, les périodes de retour des lames précipitées en 24 h dépassent 150 ans, atteignant plus de 1000 ans sur le bassin du Gard à Sanilhac. Ces périodes de retour sont sans doute surestimées si l’on prend également en compte les informations historiques antérieures à 1958. De plus, la densité du réseau d’observation avant 1958, plus faible qu’entre 1958 et 2002, a sans doute contribué à diminuer artificiellement la fréquence des événements extrêmes dans la première moitié du XXe siècle.

La proximité dans le temps de deux événements tels que celui de l’Aude et du Gard est source d’interrogations : y a-t-il une augmentation de la fréquence de ces pluies diluviennes ? Augmentation que l’on associe au changement climatique. Cette question est récurrente depuis Nîmes en octobre 1988. Mais cette hypothèse est arrangeante sous certains aspects parce qu’elle rejette la cause de ces catastrophes sur une fatalité climatique qui nous décharge de toute responsabilité. Cependant cette instantanéité climatique n’apparaît pas actuellement significativement dans les chroniques analysées à l’échelle du LR. Par ailleurs, on peut montrer que la probabilité d’observer au moins deux événements de période de retour 80 ans pendant cette période est de 11 %, et n’est donc pas négligeable. L’évolution de l’occupation des sols et de
l’urbanisation dans la région est plus probablement à l’origine d’une augmentation de la fréquence des dommages conséquents à ces événements pluvieux. L’augmentation des inondations semble donc davantage liée à des facteurs démographiques et anthropiques qu’à une augmentation des pluies intenses.

Si l’effet d’un changement climatique sur les fréquences régionales des pluies extrêmes n’est pas démontré ni observé, on peut cependant s’interroger sur une instationnarité spatiale de l’occurrence de ces pluies : celles-ci n’auraient-elles pas tendance ces dernières années à se produire plus proche du littoral plutôt que sur les contreforts montagneux ? Ce point est actuellement étudié.

Un travail important doit également être mis en œuvre pour mieux caractériser l’aléa pluvieux compte tenu de l’occurrence des récents événements de 1999 et 2002. Il est indispensable de prendre en compte la superficie couverte par les pluies, en estimant par exemple à l’échelle des bassins les distributions de lames d’eau. Une approche plus robuste face au problème d’échantillonnage des pluies extrêmes devrait aussi être développée à partir des générateurs stochastiques de chroniques de pluies. En plus de leur robustesse, ils proposent de multiples scénarios de pluie avec lesquels les ouvrages peuvent être testés, alors qu’une approche pluie de projet ne repose que sur une exploitation statistique de chronique locale souvent courte et ne consiste à utiliser qu’un seul scénario de pluie. Les aménagements futurs devraient nécessairement se faire avec une réflexion sur le long terme, soit par l’usage de ces générateurs, soit en intégrant l’information historique régionale.

La population régionale étant encore amenée à augmenter, il s’agit d’entreprendre une éducation et une formation aux phénomènes naturels pour sensibiliser les nouveaux habitants, qui ne sont pas nécessairement familiers avec les caractéristiques climatiques de la région. Il s’agit aussi d’entretenir la mémoire de ces événements par une hiérarchisation des événements que la couverture médiatique systématique a tendance à niveler. C’est une des conditions du développement d’une culture du risque ou plutôt d’une conscience du risque, que la société moderne occulte trop souvent.

RÉFÉRENCES BIBLIOGRAPHIQUES

