AbstractsIn most studies of liquid water flow, isothermal conditions are assumed. Since
the beginning of the last century, several models and studies concerning mass
and heat transfer have been conducted, but results didn't agree on the effect
of temperature and hydraulic gradients on water movement. Also, the relative
importance of these different gradients is not well known. Models used to quantify
the simultaneous transfer of water due to temperature and water content gradients
require a predetermination of thermal and iso-thermal coefficients of water
diffusivity. Moreover soil characteristics must be known, mainly the relationships
between hydraulic conductivity (K), pressure head (h), and water content ( The water content gradient is generally less than those of temperature. Even with the maximum temperature gradient, the flux due to the water content gradient is more important than those due to the temperature gradient; the difference can reach 200 %. Various field data (temperature, pressure head and water content) for different field conditions concerning the mass transfer in both liquid and vapor phases resulting from hydraulic and temperature gradients were analyzed. Results show that when soil moisture is between the wilting point and field capacity, mass transfer occurs mostly in the liquid phase. This result confirms the validity of Darcy-Richards (DARCY, 1856; RICHARDS, 1931) equation where the effect of temperature is neglected. Also, the isothermal diffusivity of liquid water is very important when compared to all other diffusivities. KeywordsDiffusivity, liquid and vapor water phases, water transfer in soil. Corresponding authorH Daghari, Institut National Agronomique de Tunisie, 43 Avenue Charles Nicole, 1082 Tunis, TUNISIE | |||
|