AbstractsAnticipated water pollution regulations require textile dye industries to reduce substantially the amount of colour in their effluents. One possible method of colour removal is through adsorption techniques. The most commonly used adsorbent for treatment of textile effluents is activated carbon. The capability of sawdust for removing colour was recognised some time ago (POOTS et al. 1978; ABO-ELELA and EL-DIB, 1987; ASFOUR et al., 1985) as were those of peat and of charred woollen fiber treatments (PERINEAU et al., 1983). Sawdust has recently received more attention (ASFOUR et al., 1985) owing to its economic advantages when the sawmills are near the textile mills. In order to measure the real efficacy of some types of sawdust, evaluation of the released coloured products and their influence on the effluent water pH are never described. The aim of the present work is to study and evaluate the behaviour of types of sawdust from Limousin woods (released COD and pH of solutions) and the discolouring power of the selected sawdust (beech, poplar, birch and fir trees) with respect to textile dyes in dilute solutions ans industrial effluents. MATERIALS AND METHODS The dyestuffs used in all the experiments are reported in table 1. The initial concentration of colouring matter was 25 mg.l-1 and determined spectrophotometrically at maximum absorbance wavelength. In a batch system the time required for equilibrium was 2 hours (or less). RESULTS AND DISCUSSION Sawdust contains some acidic or basic groups that modify the pH of water (fig. 6, 7) which becomes more acidic; the phenomenon can be used to neutralize textile fixing effluents loaded with carbonate ions (pH : 10). Batch results (table 3) indicate that the tour selected types of sawdust give good colour removal for the 8 dyes; particularly, the cationic dye : Basic Red 22 is discoloured with very good yield (96 to 99.5 %) on beech and on birch sawdust. A variation of temperature between 15 and 35 °C does not change significantly the adsorption results and at pH = 2, the release decreases (table 2) and the adsorption increases (table 4). Equilibrium conditions of adsorption of basic and acidic dyes on four types
of dust were studied using the Langmuir equation; this equation was also used
for the determination of the « ultimate capacity »
DYNAMIC STUDY Glass columns (4 cm diameter) containing 20 g or 30 g of beech sawdust were also used. The values of adsorption for a rate of 3.1 m.h-1 are 0.45 mg.g-1 (0.04 %) for AB 25 and 13 mg.g-1 (1.3 %) for BR 22. Approximately 650 litres of this dye can be treated by this sawdust (fig. 10 and 11). Industrial effluents (unknown composition) are less discoloured, probably due to the presence of many other compounds. Batch experiments adsorption of dyes on wood sawdust can lead to different measurements of the efficiency of the sawdust depending on rejection by the adsorbent of chemical species in the bulk solution. These substances modify the pH, the adsorbance of the solution and the amount of adsorbed dyes by competitive reaction. KeywordsWood sawdust, dyestuff, adsorption. Corresponding authorMazet, M., Laboratoire de Génie Chimique Traitement des Eaux, Faculté des Sciences, 123 Avenue A. Thomas, 87060 Limoges Cedex, France |