<%pg=request.getParameter("page");%>
     

Franšais      print      e-mail    

Citation

Fabre, B., J. Ayele, M. Mazet and P. Lafrance (1990). Removal of pentachlorophenol by adsorption onto various materials : The effect of or9anic co-adsorbates (Humic substances and lindane). Rev. Sci. Eau, 3 (3) : 277-292. [article in french]

Original title : Adsorption du pentachlorophenol sur divers matériaux : Influence de co-adsorbats organiques (Substances humiques et lindane).

Full text (PDF)

Abstracts

Adsorption studies for the removal of the pesticide pentachlorophenol found in a number of water supplies (BELAMIE and GIROUD, 1986) were carried out using various materials including kaolinite, bentone SD-3 and powdered activated carbon (WEBER and GOULD, 1966; WEBER and JODELHAH, 1985). It was found that adsorption on kaolinite was negligible, whereas bentone SD-3 presented and adsorption efficiency from 10 to 100-fold less than equivalent quantities of powdered activated carbon (LOTSE et al., 1968; SHAROM et al., 1980). The effect of the pH on the removal of pentachlorophenol by activated carbon was studied. The removal efficiency of pentachlorophenol by activated carbon is better in acidic media. A clear dependence of adsorption on the pH appeared to be the result of a marked variation of the pesticide solubility as a function of the pH (fig. 3). Adsorption of pentachlorophenol/phenate (5mg.l-1) diminishes markedly at pH values above the pKa of this weak acid (that we found equal to 5,9 ± 0,1) when the pentachlorophenol exists almost entirely in ionic form in aqueous solution, and is enhanced at low pH when the percentage of molecular species (whose concentration can be determined from pKa value) becomes significant (WARD and GETZEN, 1970). These remarks and the adsorptive capacities (163 mg.g-1= 0,6 mmol.g-1 at pH = 5,2 and 79 mg.g-1 0,3 mmol.g-1 at pH =12,7), suggest a - interaction between pentachlorophenol and activated carbon which seems to be confirmed by the results with bentone SD-3 (tables 1 to 4), and the values of the electrokinetic potential of these materials. This study emphasizes the effect of organic coadsorbates (e.g., dissolved humic substances and the pesticide lindane) on the adsorption capacity of activated carbon for pentachlorophenol. Two different natural organic matters were studied as coadsorbates : purified humic acids from a commercial source (at 10 mg.l-1) and fulvic acids extracted from a top soil horizon (et 20 mg.l-1) (SCHNITZER and SKINNER, 1963; THURMAN and MALCOLM, 1981). Pentachlorophenol adsorption was not affected by humic acids, whereas an increase of adsorption seemed to be observed in the presence of fulvic acids (fig. 6). Pentachlorophenol does not affect the adsorption of humic acids, but improves slightly the removal of fulvic acids. This suggests an association between the two kinds of organic compounds (WERSNAW et al., 1969; KHAN, 1972; OGNER and SCHNITZER, 1970), the resulting « complex », fulvic acids/pentachlorophenol, being more adsorbed than the compounds themselves. The coadsorbate lindane (0,65 mg.l-1) which is easily adsorbed by activated carton (GOMELLA and BELLE, 1975...) seemed also to Improve slightly the removal efficiency of pentachlorophenol by activated carton (fig. 7).

Keywords

Pentachlorophenol, adsorption, activated carbon, bentone SD-3, humic acids, fulvic acids, lindane.

Corresponding author

Fabre, B., Laboratoire de génie chimique traitement des eaux, Faculté des sciences, Université de Limoges, 123, Avenue Albert Thomas, 87060 Limoges Cedex, France

Franšais      print      e-mail